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1. Module context
While designing a training course, the relationship between this module and the others,
would be maintained by keeping them close together in the syllabus and place them in a
logical sequence. The actual selection of the topics and the depth of training would, of
course, depend on the training needs of the participants, i.e. their knowledge level and skills
performance upon the start of the course.
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2. Module profile

Title : How to do hydrological data validation using regression

Target group : Hydrologists, Data Processing Centre Managers

Duration : Two sessions of  60 min each.

Objectives : After training, the participants will be able to
1. carry out hydrological data validation using regression
2. filling in missing data using regression

Key concepts : • regression analysis & double mass
• multiple & step-wise regression
• analysis of variance
• establishment of relationship
• percent variation explained
• standard error

Training methods : Lecture, exercises

Training tools
required

: Board, OHP, Computer

Handouts : As provided in this module

Further reading
and references

:
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3. Session plan
No Activities Time Tools
1 Introduction

• Use of regression analysis
• Linear and non-linear regression equations
• Suitable regression model
• General form of rainfall-runoff relation
• Use of regression model for discharge validation
• Regression data vector

10 min
OHS 1
OHS 2
OHS 3
OHS 4
OHS 5
OHS 6

2 Simple linear regression
• General features
• Estimation of regression coefficients
• Measure for goodness of fit
• Confidence limits
• Example for annual rainfall and runoff data
• Records of rainfall and runoff
• Regression fit rainfall-runoff
• Plot of residual versus rainfall
• Plot of residual versus time
• Plot of accumulated residual
• Double mass analysis observed and computed runoff
• Plot of rainfall versus corrected runoff
• Plot of residual (corrected) versus runoff
• Plot of residual (corrected) versus time
• Plot of regression line with confidence limits
• Extrapolation

25 min
OHS 7
OHS 8
OHS 9
OHS 10
OHS 11
OHS 12
OHS 13
OHS 14
OHS 15
OHS 16
OHS 17
OHS 18
OHS 19
OHS 20
OHS 21
OHS 22
OHS 23

3 Multiple and stepwise regression
• Multiple linear regression models
• Estimation of regression coefficients
• Analysis of variance table (ANOVA)
• Coefficient of determination
• Comments on use and stepwise regression

15 min
OHS 24
OHS 25
OHS 26
OHS 27
OHS 28

4 Non-linear models
• Effects of transformation

5 min
OHS 29

5 Filling in missing data
• Various uses of regression for infilling missing data
• Type of regression model for filling-in missing flows

5 min
OHS 30
OHS 31

6 Exercise
• Create monthly and annual rainfall and runoff series for

Bilodra
• Make runoff regression models for a monsoon month and

annual series
• Generate runoff data and compare with observed series

20 min

20 min

20 min
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4. Overhead/flipchart master
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5. Handout
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Add copy of the main text in chapter 7, for all participants
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6. Additional handout
These handouts are distributed during delivery and contain test questions, answers to
questions, special worksheets, optional information, and other matters you would not like to
be seen in the regular handouts.

It is a good practice to pre-punch these additional handouts, so the participants can easily
insert them in the main handout folder.
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7. Main text
Contents

1 Regression Analysis 1

2 Simple Linear Regression 3



HP Training Module File: “ 37 How to do hydrological data validation using regression.doc” Version Feb. 2002 Page 1

How to do hydrological data validation using regression

1 Regression Analysis

1.1 Introduction

In regression analysis a relation is made between a dependent variable Y (i.e. the one one
wants to estimate) and one or a number of independent variables Xi. The objective(s) of
establishing a regression model may be manifold, like:

1. Making forecasts/predictions/estimates on Y based on data of the independent
variable(s)

2. Investigation of a functional relationship between two or more variables
3. Filling in missing data in the Y-series
4. Validation of Y-series

In data processing at a number of occasions regression analysis is applied:

• for validation and in-filling of missing water level data a relation curve is established
based on a polynomial relation between the observations at two water level gauging
stations either or not with a time-shift

• for transformation of water levels into discharge series a discharge rating curve is
created. The commonly used discharge rating curves are of a power type regression
equation, where for each range of the independent variable (gauge reading) a set of
parameters is established.

• for estimation of rainfall (or some other variable) on the grid points of a grid over the
catchment as a weighted average of observations made at surrounding stations with the
aid of kriging also falls into the category of regression.

For validation of rainfall data use is made of a linear relation between observations at a base
station and surrounding stations. The weights given to the surrounding stations is inverse
distance based. Because the weights are not determined by some estimation error
minimization criterion as is the case in regression analysis but rather on the geographical
location of the observation stations those relations are not regression equations.

In the above examples of applications of regression analysis linear as well as non-linear
relations have been mentioned:

• a linear regression equation is an equation which is linear in its coefficients:

How the variables Xi behave does not matter and they may for example form an ith order
polynomial; hence the relation between Y and X may be non-linear.

• in a non-linear regression equation the coefficients also appear as a power, like e.g.:

By considering a logarithmic transformation on the equation an non-linear equation as
shown above can be brought back to a linear one. Then, the error minimisation is carried
out on the logarithm rather than on the original values. Note that far more complex non-
linear regression models can be considered but this is outside the scope of hydrological
data processing.

ii2211 X........XXY β++β+β+α=

i
i

2
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1
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In this module at first attention will be given to linear regression equations. Dependent on the
number of independent variables in the regression equation a further distinction is made
between:

• simple linear regression, where the dependent variable is regressed on one
independent variable, and

• multiple and stepwise linear regression: the dependent variable is regressed on more
than one independent variable. The difference between multiple and stepwise
regression is that in multiple linear regression all independent variables brought in the
analysis will be included in the regression model, whereas in stepwise regression the
regression equation is built up step by step taking those independent variables into
consideration first, which reduce the error variance most; the entry of new independent
variables is continued until the reduction in the error variance falls below a certain limit.
In some stepwise regression tools a distinction is made between free and forced
independent variables: a forced variable will always be entered into the equation no
matter what error variance reduction it produces, whereas a free variable enters only if
the error variance reduction criterion is met.

The type of regression equation that is most suitable to describe the relation depends
naturally on the variables considered and with respect to hydrology on the physics of the
processes driving the variables. Furthermore, it also depends on the range of the data one is
interested in. A non-linear relation may well be described by a simple linear regression
equation, within a particular range of the variables in regression, as applies for example to
annual runoff regressed on annual rainfall. In Figure.1 the general nature of of such a
relationship is shown.

Figure 1:
General form of
relation between
annual rainfall and
runoff

For low rainfall amounts the relation is highly non-linear in view of the strong varying rainfall
abstractions due to evaporation. For very high rainfalls the abstraction is constant as it has
reached its potential level; then the rainfall-runoff relation runs parallel to a line under 45o

with an offset equal to the potential evaporation and becomes a true linear relation. In
between reaches may approximately be described by a linear equation. As long as the
application of the relation remains within the observed range then there is no harm in using a
linear relation, provided that the residuals distribute randomly about the regression equation
over the range considered.
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Another application of regression, which has not been discussed previously, is for validation
of discharge data. A regression model is developed where runoff is regressed on rainfall
(when monthly data are considered on rainfall in the same and in the previous month). By
investigating the time-wise behaviour of the deviations from the regression line (i.e. the
residuals) an impression is obtained about the stationarity of the rainfall-runoff relation (note:
not of the stationarity of either rainfall or runoff!). Provided that the rainfall data are free of
observation errors any non-stationary behaviour of the residuals may then be explained by:

• change in the drainage characteristics of the basin, or
• incorrect runoff data, which in turn can be caused by:

− errors in the water level data, and/or

− errors the discharge rating curve

Experience has shown that by applying double mass analysis on the observed and
computed runoff (derived from rainfall) a simple but effective tool is obtained to validate the
discharge data. (Alternatively, instead of using a regression model, also a conceptual
rainfall-runoff model can be used but at the expense of a far larger effort.) Hence, a very
important aspect of judging your regression model is to look carefully at the behaviour of the
residuals, not only about the regression line as a function of X but also as a function of time.
An example has been worked out on this application.

2 Simple Linear Regression
The most common model used in hydrology is based on the assumption of a linear
relationship between two variables. Such models are called simple linear regression models,
which have the following general form:

       α + βX              (1)

Where:   =   dependent variable, also called response variable (produced by the regression
model)

X =  independent variable or explanatory variable, also called input, regressor, or
predictor variable

α, β = regression coefficients

The actual observations on Y do not perfectly match with the regression equation and a
residual ε is observed, see also Figure 2:

Y = α + βX + ε  (2)

Hence:

  (3)

=Ŷ

Ŷ

ii1 ŶY ε=−
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Figure 2:
Explained i and unexplained
part εi of Y under the
assumption of a constant
error distribution

The regression line will be established such that                        , i.e. that it produces
unbiased results and further that the variance of the residual σε

2 is minimum. With respect to
the residual it is assumed that its distribution about the regression line is normal and
independent of X, hence for all values of X the distribution F(ε) about the regression-line is
the same, see Figure 2.

Now consider the following partitioning:

 (4)

Above equation expresses:  Total variance = explained variance + unexplained variance

Hence, the smaller the unexplained variance (variance about regression) is, the larger the
explained variance (or variance due to regression) will be. It also shows that the explained
variance is always smaller than the total variance of the process being modelled. Hence the
series generated by equation (1) will only provide a smoothed representation of the true
process, having a variance which is smaller than the original, unless a random error with the
characteristics of the distribution of the residual is added. Nevertheless, for individual
generated values the estimate according to (1) is on average the best because E[ε] = 0. The
root of the error variance is generally denoted as standard error.

In the following we will discuss:

• estimation of the regression coefficients
• measure for the goodness of fit
• confidence limits for the regression coefficients
• confidence limits for the regression equation
• confidence limits for the predicted values
• application of regression to rainfall-runoff analysis
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Estimation of the regression coefficients

The estimators for the regression coefficients α and β , denoted by a and b respectively are
determined by minimising Σε2 Denoting the observations on X and Y by xi and yi this implies,
that for:

 (5)

to be minimum, the first derivatives of M with respect to a and b be set equal to zero:

           (6a)

           (6b)

Above equations form the so called normal equations. From this it follows for a and b:

 (7)

Since the procedure is based on minimising Σε2, the estimators a and b for α and β are
commonly called least squares estimators. This solution also satisfies Σε = 0 as is
observed from (6a)

With 7 the simple regression equation can also be written in the form:

 (8)

or with the definition of the correlation coefficient r = SXY/σX.σY:

 (9)

Measure for goodness of fit

By squaring (9) and taking the expected value of the squares it is easily observed by
combining the result with (4) that the error variance can be written as:

           (10)

Hence, the closer r2 is to 1 the smaller the error variance will be and the better the
regression equation is in making predictions of Y given X. Therefore r2 is an appropriate
measure for the quality of the regression fit to the observations and is generally called the
coefficient of determination.

It is stressed, though, that a high coefficient of determination is not sufficient. It is of great
importance to investigate also the behaviour of the residual about the regression line and its
development with time. If there is doubt about the randomness of the residual about
regression then a possible explanation could be the existance of a non-linear relation.
Possible reasons about absence of randomness with time have to do with changes in the
relation with time as was indicated in the previous sub-chapter.
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Confidence limits of the regression coefficients and model estimates

It can be shown, that, based on the sampling distributions of the regression parameters, the
following estimates and confidence limits hold (see e.g. Kottegoda and Rosso, 1998).

Error variance
An unbiased estimate of the error variance is given by:

           (11)

Note that n-2 appears in the denominator to reflect the fact that two degrees of freedom
have been lost in estimating (α, β)

Regression coefficients
A (100-α) percent confidence interval for b is found from the following confidence limits:

           (12)

A (100-α) percent confidence interval for a results from the following confidence limits:

           (13)

Regression line
A (100-α) percent confidence interval for the mean response to some input value x0 of X is
given by:

           (14)

Note that the farther away x0 is from its mean the wider the confidence interval will be
because the last term under the root sign expands in that way.

Prediction
A (100-α) percent confidence interval for a predicted value Y when X is x0 follows from:

           (15)

It is observed by comparing (15) with (14) that in (15) full account of the error variance is
added to last term. Hence, these confidence limits will be substantially wider that those for
the mean regression line. Note however, since the multiplier of the standard error is under
the root sign, the confidence limits in (15) are not simply obtained by adding t-times the
standard error to the confidence limits of the regression line.

Example 1
In Table 1 some 17 years of annual rainfall and runoff data of a basin are presented.
Regression analysis will be applied to validate the runoff series as there is some doubt about
the rating curves applied before 1970. No changes took place in the drainage characteristics
of the basin.
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Rainfall Runoff Year Rainfall Runoff Year Rainfall RunoffYear
(mm) (mm) (mm) (mm) (mm) (mm)

1961
1962
1963
1964
1965
1966

1130
1280
1270
1040
1080
1150

592
832
768
488
472
656

1967
1968
1969
1970
1971
1972

1670
1540
990

1190
1520
1370

872
816
456
780

1090
960

1973
1974
1975
1976
1977

1650
1510
1600
1300
1490

1240
1030
1340
870

1060

Table 1: Rainfall and runoff data (in mm) for the period 1961 to 1977

A time series plot of the rainfall and runoff series is presented in Figure 3a. A simple linear
regression equation is established for R = f(P), see Figure 3b. The regression equation
reads:

R = -530 + 1.025xP, with σε = 130 mm and the coefficient of determination r2 = 0.75.

From Figure 3c it is observed that the trend line for the residuals runs exactly parallel to the
axis of the independent variable (=rainfall) and is zero throughout meaning that the
regression was properly performed mathematically. It appears, though, that the assumption
of a constant error distribution is not fulfilled: the variation about regression clearly increases
with increase in the independent variable. The time series plot of the residuals when
subjected to a trend analysis shows a clear upward trend. This looks like a gradual change
in the rainfall-runoff relation in the period of observation. However, as stated above, no
changes took place in the drainage characteristics of the basin. The plot of accumulated
residuals shown in Figure 3e features a distinct change in the residuals as from 1970
onward. A double mass analysis on the observed runoff against the runoff computed by
regression on the rainfall also shows a distinct break around 1970, see Figure 3f. From this
analysis it is revealed that the runoff data prior to 1970 have been underestimated by 20%.
Accordingly, a correction was applied to the runoff.

The corrected time series is shown in Figure 4a. The results of the regression analysis on
the corrected data are presented in the Figures 4b to 4e. The regression equation now
reads:

R = -303 + 0.920xP, with σε = 88.3 mm and the coefficient of determination r2 = 0.84. It is
observed that the coefficient of determination has increased substantially and consequently
the standard error has decreased; its value is now over 30% less. The behaviour of the
residual as a function of the dependent variable and as a function of time are shown in
Figures 4c and d. Figure 4c shows that the variance of the residual is now fairly constant
with X. From Figure 4d it is observed that no time effect is present anymore. In Figure 4e the
95% confidence limits about the regression line and of the predictions are shown. The
computations are outlined in Table 2.
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Year X=Rainfall Y=Runoff (X-Xm)2 Yest CL1 CL2 UC1 LC1 UC2 LC2
1 2 3 4 5 6 7 8 9 10 11

1961 1130 740 44100 737 64 199 801 673 936 538
1962 1280 1040 3600 875 47 194 922 827 1069 681
1963 1270 960 4900 866 48 194 914 818 1060 671
1964 1040 610 90000 654 78 204 732 576 858 450
1965 1080 590 67600 691 72 201 762 619 892 489
1966 1150 820 36100 755 61 198 816 694 953 557
1967 1670 1090 108900 1234 84 206 1317 1150 1440 1028

1968 1540 1020 40000 1114 62 198 1176 1052 1312 916
1969 990 570 122500 608 87 207 695 521 815 400
1970 1190 780 22500 792 56 196 848 736 988 596
1971 1520 1090 32400 1096 60 198 1155 1036 1293 898
1972 1370 960 900 958 46 194 1004 911 1152 764
1973 1650 1240 96100 1215 80 205 1295 1135 1420 1011
1974 1510 1030 28900 1086 58 197 1145 1028 1284 889
1975 1600 1340 67600 1169 72 201 1241 1098 1371 968
1976 1300 870 1600 893 46 194 940 847 1087 699
1977 1490 1060 22500 1068 56 196 1124 1012 1264 872
Xm 1340 SXX 790200

Table 2: Example computation of confidence limits for regression analysis

In the computations use is made of equations (14) and (15). In Column 2 the mean of X is
computed and the sum of Column 4 is SXX. In the Columns 6 and 7 the last term of
equations (14) and (15) are presented. Note that tn-2,1-α/2 = 2 131 and σε = 88.3 mm. Column
6 and 7 follow from:

The upper and lower confidence limits of the mean regression line then simply follow from
Column 5 + 6 and Column 5 – 6, whereas the confidence limits for the predicted value
(Columns 10 and 11) are derived from Column  5 + 7 and Column 5 – 7. It may be observed
that the width of the confidence interval is minimum at the mean value of the independent
variable. The variation of the width with the independent variable is relatively strongest for
the confidence limits of the mean relation. The confidence limits for the prediction are seen
to vary little with the variation in the independent variable, since the varying part under the
root (i.e. the last term) is seen to be small compared to 1.
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Figure 3a:
Rainfall-runoff
record 1961-1977

Figure 3b:
Regression fit
Rainfall-runoff

Figure 3c:
Plot of residual
versus rainfall
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Figure 3d:
Plot of residual versus
time

Figure 3e:
Plot of accumulated
residual

Figure 3f:
Double mass analysis
observed versus
computed runoff
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Figure 4a:
Plot of rainfall and
corrected runoff

Figure 4b:
Plot of rainfall runoff
regression, corrected
runoff data

Figure 4c:
Plot of residual
versus rainfall
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Figure 4d:
Plot of residual versus
time

Figure 4e:
Regression line with
confidence limits for
the mean regression
and predicted values

Extrapolation

The extrapolation of a regression equation beyond the range of X used in estimating α and β
is discouraged for two reasons. First as can be seen from Figure 4e the confidence intervals

on the regression line become wide as the distance from X  is increased. Second the
relation between Y and X may be non-linear over the entire range of X and only
approximately linear for the range of X investigated. A typical example of this is shown in
Figure 1.

Multiple Linear Regression

Often we wish to model the dependent variable as a function of several other quantities in
the same equation. In extension to the example presented in the previous sub-chapter
monthly runoff is likely to be dependent on the rainfall in the same month and in the previous
month(s) Then the regression equation would read:

R(t) = α + β1P(t) + β2P(t-1) + ….            (16)
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In this section the linear model is extended to include several independent variables.

A general linear model of the form:

Y = β1 X1 + β2 X2 + …. βpXp + ε            (17)

is discussed, where Y is a dependent variable, X1, X2, …. Xp are independent variables and
β1, β2, ….. βp are unknown parameters. This model is linear in the parameters βj .Note that
the form (16) can always be brought to the form (17) with the constant α by considering the
variables Y and Xi centered around their mean values, similar to (8).

In practice n observations would be available on Y with the corresponding n observations on
each of the p independent variables. Thus n equations can be written, one for each
observation. Essentially we will be solving n equations for the p unknown parameters. Thus
n must be equal to or greater than p. In practice n should be at least 3 or 4 times as large as
p. The n equations then read

Y = X β + ε            (18)
where Y = (n x 1)-data column vector of the centred dependent variable (yi - y)

X = (n x p)-data matrix of the centred independent variables (xi1-x1),….,(xip-xp)
β = (p x 1)- column vector, containing the regression coefficients
ε = (n x 1)-column vector of residuals

The residuals are conditioned by:

E[e] = 0            (19)

Cov(e) = σε
2 I            (20)

Where: I   = (n x n) diagonal matrix with diagonal elements = 1 and off-diagonal elements = 0
σε

2 = variance of (Y|X)

According to the least squares principle the estimates b of β are those which minimise the
residual sum of squares εTε. Hence:

εTε =(Y – Xβ)T(Y – Xβ)            (21)

is differentiated with respect to b, and the resulting expression is set equal to zero. This
gives:

XTXb = XTY            (22)

called the normal equations, where β is replaced by its estimator b. Multiplying both sides
with (XTX)-1 leads to an explicit expression for b:

b = (XTX)-1 XTY            (23)

The properties of the estimator b of β are:

E[b] = β            (24)

Cov(b) = σε
2(XTX)-1            (25)
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By (21) and (22) the total adjusted sum of squares YTY can be partitioned into an explained
part due to regression and an unexplained part about regression, as follows:

YTY = bTXTY + eTe.            (26)

Where: (Xb)TY = sum of squares due to regression
eTe. = sum of squares about regression, with ε replaced by e due to the replacement
           of β by b.

In words this reads:

Total sum of squares about the mean = regression sum of squares + residual sum of
squares

The mean squares values of the right hand side terms in (26) are obtained by dividing the
sum of squares by their corresponding degrees of freedom. If b is a (p x 1)-column vector,
i.e. there are p-independent variables in regression, then the regression sum of squares has
p-degrees of freedom. Since the total sum of squares has (n-1)-degrees of freedom (note: 1
degree of freedom is lost due to the estimation ofy), it follows by subtraction that the
residual sum of squares has (n-1-p)-degrees of freedom. It can be shown that the residual
mean square se

2:

Is an unbiased estimate of σε
2 .The estimate se of σε  is the standard error of estimate.

The analysis of variance table (ANOVA) summarises the sum of squares quantities

Source Sum of squares Degrees
of
freedom

Mean squares

Regression (b1, …., bp)

Residual (e1, …., en)

SR = bTXTY

Se = eTe = YTY - bTXTY

p

n-1-p

MSR = bTXTY/p

MSe = se
2 = eTe/(n-1-p)

Total (adjusted fory) SY =YTY n-1 MSY = sY
2 = YTY/(n-1)

Table 3: Analysis of variance table (ANOVA)

As for the simple linear regression a measure for the quality of the regression equation is the
coefficient of determination, defined as the ratio of the explained or regression sum of
squares and the total adjusted sum of squares.

The coefficient should be adjusted for the number of independent variables in regression.
Then, instead of the sum of squares ratio in the most right-hand side term the mean square
ratio is used. So with the adjustment:

           (29)
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From this it is observed that Rma
2 < Rm

2 except for Rm = 1 (i.e. a perfect model) where Rm is
the multiple correlation coefficient and Rma the adjusted multiple correlation coefficient.

Reference is made to the annex to the HYMOS manual for statistical inference on the
regression coefficients.

Confidence Intervals on the Regression Line

To place confidence limits on Y0 where Y0 = X0b it is necessary to have an estimate for the
variance of      . Considering Cov(b) as given in (25) the variance Var(    ) is given by (Draper
and Smith 1966):

se
2X0(X

TX)–1 X0
T            (30)

The confidence limits for the mean regression equation are given by

           (31)

Comments

A common situation in which multiple regression is used is when one dependent variable
and several independent variables are available and it is desired to find a linear model that is
developed does not necessarily have to contain all of the independent variables. Thus the
points of concern are: (1) can a linear model be used and (2) what independent variable
should be included?

A factor complicating the selection of the model is that in most cases the independent
variables are not statistically independent at all but are correlated. One of the first steps that
should be done in a regression analysis is to compute the correlation matrix.

Retaining variables in a regression equation that are highly correlated makes the
interpretation of the regression coefficients difficult. Many times the sign of the regression
coefficient may be the opposite of what is expected if the corresponding variable is highly
correlated with another independent variable in the equation.

A common practice in selecting a multiple regression model is to perform several
regressions on a given set of data using different combinations of the independent variables.
The regression that “best” fits the data is then selected. A commonly used criterion for the
”best” fit is to select the equation yielding the largest value of Rma

2.

All of the variables retained in a regression should make a significant contribution to the
regression unless there is an overriding reason (theoretical or intuitive) for retaining a non-
significant variable. The variables retained should have physical significance. If two variables
are equally significant when used alone, but are not both needed, the one that is easiest to
obtain should be used.

The number of coefficients estimated should not exceed 25 to 35 percent of the number of
observations. This is a rule of thumb used to avoid “over-fitting” whereby oscillations in the
equation may occur between observations on the independent variables.

Stepwise Regression

One of the most commonly used procedures for selecting the “best” regression equations is
stepwise regression. This procedure consists of building the regression equation one
variable at a time by adding at each step the variable that explains the largest amount of the

)Ŷ(VartbXCL 0pn,2/a10 −−± ±=

  )ŶVar( 0 =

0Ŷ0Ŷ
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remaining unexplained variation. After each step all the variables in the equation are
examined for significance and discarded if they are no longer explaining a significant
variation. Thus the first variable added is the one with the highest simple correlation with the
dependent variable. The second variable added is the one explaining the largest variation in
the dependent variable that remains unexplained by the first variable added. At this point the
first variable is tested for significance and retained or discarded depending on the results of
this test. The third variable added is the one that explains the largest portion of the variation
that is not explained by the two variables already in the equation. The variables in the
equation are then tested for significance. This procedure is continued until all of the variables
not in the equation are found to be insignificant and all of the variables in the equation are
significant. This is a very good procedure to use but care must be exercised to see that the
resulting equation is rational.

The real test of how good is the resulting regression model, depends on the ability of the
model to predict the dependent variable for observations on the independent variables that
were not used in estimating the regression coefficients. To make a comparison of this
nature, it is necessary to randomly divide the data into two parts. One part of the data is then
used to develop the model and the other part to test the model. Unfortunately, many times in
hydrologic applications, there are not enough observations to carry out this procedures.

Transforming Non Linear Models

Many models are not naturally linear models but can be transformed to linear models. For
example

Y = α Xβ            (32)

is not a linear model. It can be linearized by using a logarithmatic transformation:

lnY = ln α + β ln X            (33)

or

YT = αT+ βT XT            (34)

where
YT = ln Y
αT = ln α
βT = β
XT = ln X

Standard regression techniques can now be used to estimate αT and βT for the transformed
equation and α and β estimated from the logarithmatic transformation. Two important points
should be noted.:

Firstly, the estimates of α and β obtained in this way will be such that is a
min. and not such that is a minimum.

Secondly, the error term on the transformed equation is additive (YT = αT + βT XT+ εT)
implying that it is multiplicative on the original equation i.e. Y = αXβε. These errors are
related εT = ln ε. The assumptions used in hypothesis testing and confidence intervals must
now be valid for ε` and the tests and confidence intervals made relative to the transformed
model.

2
ii )ŶY( −∑
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In some situations the logarithmic transformation makes the data conform more closely to
the regression assumptions. The normal equations for a logarithmic transformation are
based on a constant percentage error along the regression line while the standard
regression is based on a constant absolute error along the regression line

Filling in missing data

An important application of regression analysis is the use of a regression equation to fill in
missing data. In Part II of Volume 8 attention has been given to fill in missing rainfall and
water level data. In this section attention will be given to filling in missing runoff data using
rainfall as input. Typically, such techniques are applied to time series with time intervals of a
decade, a month or larger.

Generally a regression of the type presented in equation (16) is applicable. Assume that the
objective is to fill in monthly data. The regression coefficients are likely to be different for
each month, hence the discharge in month k of year m is computed from:

Qk,m= ak + b1kP k,m + b2kP k-1,m + se,ke            (35)

It is observed that the regression coefficients are to be determined for each month in the
year. The last term is added to ensure that the variance of the discharge series is being
preserved. It represents the unexplained part of the functional relationship. Omitting the
random component will result in a series with a smaller variance, which creates an
inhomogeneity in the series and certainly does affect the overall monthly statistics.
Dependent on the application it has to be decided whether or not to include the random
components. If, however, a single value is to be estimated the random component should be
omitted as the best guess is to rely on the explained part of equation (35); E[e] = 0. Note that
the calibration of such a model will require at least some 15 to 20 years of data, which might
be cumbersome occasionally.

Experience has shown that for a number of  climatic zones the regression coefficients do not
vary much from month to month, but rather vary with the wetness of the month. Two sets of
parameters are then applied, one set for wet conditions and one for dry conditions with a
rainfall threshold to discriminate between the two parameter sets The advantage of such a
model is that less years with concurrent data have to be available to calibrate it, with results
only slightly less than with (2.35) can be achieved. The use of a threshold is also justifiable
from a physical point of view as the abstractions from rainfall basically create a non-linearity
in the rainfall-runoff relationship.

Concurrent rainfall and runoff data should be plotted to investigate the type of relationship
applies. One should never blindly apply a particular model.
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